Selasa, 23 Februari 2010

individu kimlink

NAMA : NORMILISA NOPRIANI
NIM : H1E109028
PRODI : TEKNIK LINGKUNGAN



1. Mengenal Satuan PPM
PPM atau nama kerennya “Part per Million” jika dibahasa Indonesiakan akan menjadi “Bagian per Sejuta Bagian” adalah satuan konsentrasi yang sering dipergunakan dalam di cabang Kimia Analisa. Satuan ini sering digunakan untuk menunjukkan kandungan suatu senyawa dalam suatu larutan misalnya kandungan garam dalam air laut, kandungan polutan dalam sungai, atau biasanya kandungan yodium dalam garam juga dinyatakan dalam ppm.

Seperti halnya namanya yaitu ppm, maka konsentrasinya merupakan perbandingan antara berapa bagian senyawa dalam satu juta bagian suatu sistem. Sama halnya denngan “prosentase” yang menunjukan bagian per seratus. Jadi rumus ppm adalah sebagai berikut;

ppm = jumlah bagian spesies / satu juta bagian sistem dimana spesies itu berada

Atau lebih gampangnya ppm adalah satuan konsentrasi yang dinyatakan dalam satuan mg/Kg, Kenapa? karena 1 Kg = 1.000.000 mg betul kan? Untuk satuan yang sering dipergunakan dalam larutan adalah mg/L, dengan ketentuan pelarutnya adalah air sebab dengan densitas air 1 g/mL maka 1 liter air memiliki masa 1 Kg betul kan? jadi satuannya akan kembali ke mg/Kg.

Contoh, kandungan Pb dalam air sungai adalah 20 ppm artinya dalam setiap Kg air sungai terdapat 20 mg Pb. Kandungan karbon dalam baja adalah 5 ppm artinya dalam 1 Kg baja terdapat 5 mg karbon. Air minum mengandung yodium sebesar 15 ppm, bisa diartikan bahwa setiap liter minum tersebut terdapat 5 mg yodium.

2. PPB
Jika diartikan dari kata per kata, maka “Part per Billion” mempunyai arti Satu bagian per miliar. PPB menunjukkan satu bagian per 1.000.000.000 bagian, satu bagian dalam 10 9, dan nilai 1 × 10-9 ini setara dengan 1 tetes air diencerkan ke dalam 250 drum bahan kimia (50 m 3),

Ppb digunakan untuk mengukur konsentrasi suatu kontaminan dalam tanah dan sedimen. 1 ppb sama dengan 1 µg per kg zat padat (µg/kg). Ppb kadang juga digunakan untuk menggambarkan konsentrasi kecil dalam air, di mana 1 ppb setara dengan 1 µg/l, karena satu liter air beratnya kurang lebih 1.000.000 µg. Selain itu, ppb juga sering digunakan untuk menggambarkan konsentrasi kontaminan di udara (sebagai fraksi volume). Dalam kasus ini konversi ppb untuk µg/m3 tergantung pada berat molekul dari kontaminan.

1 ppb = 1 ug/kg atau 1 ug/L atau 1 ng/g

3. Pengertian DDT
DDT (Dichloro-Diphenyl-Trichloroethane) adalah salah satu pestisida sintetis. Ini merupakan bahan kimia yang panjang, unik, dan sejarah kontroversial. Synthesized pertama di 1874, DDT's insecticidal properti tidak ditemukan sampai 1939. Dalam Perang Dunia II digunakan dan dampaknya luar biasa bagi penduduk sipil maupun militer untuk mengendalikan penyebaran nyamuk malaria dan kutu transmisi tipus. DDT berhasil menurunkan secara drastis insiden kedua penyakit tersebut. Swiss chemist Paul Hermann Müller dari Geigy Pharmaceutical dianugerahi Penghargaan Nobel dalam Physiology Pengobatan atau di 1948 untuk penemuan tingginya efisiensi DDT sebagai racun kontak terhadap beberapa arthropods. Setelah perang, DDT telah tersedia untuk digunakan sebagai insektisida pertanian, dan segera produksinya dan menggunakan skyrocketed. DDT nama dagang yang telah dipasarkan di bawah termasuk Anofex, Cezarex, Chlorophenothane, Clofenotane, Dicophane, Dinocide, Gesarol, Guesapon, Guesarol, Gyron, Ixodex, Neocid, Neocidol, dan Zerdane.
Namun pemakaian DDT tidak boleh sembarangan karena bahan kimia yang dilepaskannya ke lingkungan dapat berpengaruh pada kesetabilan ekologi dan kesehatan manusia.

http://en.wikipedia.org/wiki/DDT

3. Penyebab Global Warming Selain Efek Rumah Kaca
=Efek umpan balik=

Anasir penyebab pemanasan global juga dipengaruhi oleh berbagai proses umpan balik yang dihasilkannya. Sebagai contoh adalah pada penguapan air. Pada kasus pemanasan akibat bertambahnya gas-gas rumah kaca seperti CO2, pemanasan pada awalnya akan menyebabkan lebih banyaknya air yang menguap ke atmosfer. Karena uap air sendiri merupakan gas rumah kaca, pemanasan akan terus berlanjut dan menambah jumlah uap air di udara sampai tercapainya suatu kesetimbangan konsentrasi uap air. Efek rumah kaca yang dihasilkannya lebih besar bila dibandingkan oleh akibat gas CO2 sendiri. (Walaupun umpan balik ini meningkatkan kandungan air absolut di udara, kelembaban relatif udara hampir konstan atau bahkan agak menurun karena udara menjadi menghangat).[3] Umpan balik ini hanya berdampak secara perlahan-lahan karena CO2 memiliki usia yang panjang di atmosfer.

Efek umpan balik karena pengaruh awan sedang menjadi objek penelitian saat ini. Bila dilihat dari bawah, awan akan memantulkan kembali radiasi infra merah ke permukaan, sehingga akan meningkatkan efek pemanasan. Sebaliknya bila dilihat dari atas, awan tersebut akan memantulkan sinar Matahari dan radiasi infra merah ke angkasa, sehingga meningkatkan efek pendinginan. Apakah efek netto-nya menghasilkan pemanasan atau pendinginan tergantung pada beberapa detail-detail tertentu seperti tipe dan ketinggian awan tersebut. Detail-detail ini sulit direpresentasikan dalam model iklim, antara lain karena awan sangat kecil bila dibandingkan dengan jarak antara batas-batas komputasional dalam model iklim (sekitar 125 hingga 500 km untuk model yang digunakan dalam Laporan Pandangan IPCC ke Empat). Walaupun demikian, umpan balik awan berada pada peringkat dua bila dibandingkan dengan umpan balik uap air dan dianggap positif (menambah pemanasan) dalam semua model yang digunakan dalam Laporan Pandangan IPCC ke Empat.[3]

Umpan balik penting lainnya adalah hilangnya kemampuan memantulkan cahaya (albedo) oleh es.[4] Ketika temperatur global meningkat, es yang berada di dekat kutub mencair dengan kecepatan yang terus meningkat. Bersamaan dengan melelehnya es tersebut, daratan atau air dibawahnya akan terbuka. Baik daratan maupun air memiliki kemampuan memantulkan cahaya lebih sedikit bila dibandingkan dengan es, dan akibatnya akan menyerap lebih banyak radiasi Matahari. Hal ini akan menambah pemanasan dan menimbulkan lebih banyak lagi es yang mencair, menjadi suatu siklus yang berkelanjutan.

Umpan balik positif akibat terlepasnya CO2 dan CH4 dari melunaknya tanah beku (permafrost) adalah mekanisme lainnya yang berkontribusi terhadap pemanasan. Selain itu, es yang meleleh juga akan melepas CH4 yang juga menimbulkan umpan balik positif.

Kemampuan lautan untuk menyerap karbon juga akan berkurang bila ia menghangat, hal ini diakibatkan oleh menurunya tingkat nutrien pada zona mesopelagic sehingga membatasi pertumbuhan diatom daripada fitoplankton yang merupakan penyerap karbon yang rendah.[5]

=VARIASI MATAHARI=
Terdapat hipotesa yang menyatakan bahwa variasi dari Matahari, dengan kemungkinan diperkuat oleh umpan balik dari awan, dapat memberi kontribusi dalam pemanasan saat ini.[6] Perbedaan antara mekanisme ini dengan pemanasan akibat efek rumah kaca adalah meningkatnya aktivitas Matahari akan memanaskan stratosfer sebaliknya efek rumah kaca akan mendinginkan stratosfer. Pendinginan stratosfer bagian bawah paling tidak telah diamati sejak tahun 1960,[7] yang tidak akan terjadi bila aktivitas Matahari menjadi kontributor utama pemanasan saat ini. (Penipisan lapisan ozon juga dapat memberikan efek pendinginan tersebut tetapi penipisan tersebut terjadi mulai akhir tahun 1970-an.) Fenomena variasi Matahari dikombinasikan dengan aktivitas gunung berapi mungkin telah memberikan efek pemanasan dari masa pra-industri hingga tahun 1950, serta efek pendinginan sejak tahun 1950.[8][9]

Ada beberapa hasil penelitian yang menyatakan bahwa kontribusi Matahari mungkin telah diabaikan dalam pemanasan global. Dua ilmuan dari Duke University mengestimasikan bahwa Matahari mungkin telah berkontribusi terhadap 45-50% peningkatan temperatur rata-rata global selama periode 1900-2000, dan sekitar 25-35% antara tahun 1980 dan 2000.[10] Stott dan rekannya mengemukakan bahwa model iklim yang dijadikan pedoman saat ini membuat estimasi berlebihan terhadap efek gas-gas rumah kaca dibandingkan dengan pengaruh Matahari; mereka juga mengemukakan bahwa efek pendinginan dari debu vulkanik dan aerosol sulfat juga telah dipandang remeh.[11] Walaupun demikian, mereka menyimpulkan bahwa bahkan dengan meningkatkan sensitivitas iklim terhadap pengaruh Matahari sekalipun, sebagian besar pemanasan yang terjadi pada dekade-dekade terakhir ini disebabkan oleh gas-gas rumah kaca.

Pada tahun 2006, sebuah tim ilmuan dari Amerika Serikat, Jerman dan Swiss menyatakan bahwa mereka tidak menemukan adanya peningkatan tingkat "keterangan" dari Matahari pada seribu tahun terakhir ini. Siklus Matahari hanya memberi peningkatan kecil sekitar 0,07% dalam tingkat "keterangannya" selama 30 tahun terakhir. Efek ini terlalu kecil untuk berkontribusi terhadap pemansan global.[12][13] Sebuah penelitian oleh Lockwood dan Fröhlich menemukan bahwa tidak ada hubungan antara pemanasan global dengan variasi Matahari sejak tahun 1985, baik melalui variasi dari output Matahari maupun variasi dalam sinar kosmis.[14]

http://id.wikipedia.org/wiki/Pemanasan_global


Free Blogspot Templates by Isnaini Dot Com and Bridal Dresses 2009.